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The hereditary hemochromatosis (HHC) gene, HFE on chromosome 6p21.3, encodes a protein involved in iron

homeostasis. HFE mutations have low penetrance with a mild effect on serum iron levels. Animal, twin, and

population studies have shown that carrier state for C282Y can increase iron levels. A proportion of heterozygotes

show slightly elevated serum iron levels. Increased serum iron has been suggested to increase the risk for

oxidative damage to DNA. Epidemiologic studies established a correlation between iron levels and cancer risk.

Case-control studies have reported associations between HFE mutations C282Y/H63D and several cancers, some

of which in interaction with the transferrin receptor gene TFRC or dietary iron intake. Increased cancer risk in C282Y

carriers is likely due to higher iron levels in a multifactorial setting. In childhood acute lymphoblastic leukemia

(ALL), there is an association of C282Y with a gender effect in two British populations. No association has been

found in acute myeloblastic leukemia and Hodgkin disease in adults. The childhood leukemia association possibly

results from elevated intracellular iron in lymphoid cells increasing the vulnerability to DNA damage at a critical time

window during lymphoid cell development. Interactions of HFE with environmental and genetic factors, most of

which are recognized, may play a role in modification of susceptibility to leukemia conferred by C282Y. Given the

population frequency of C282Y and the connection between iron and cancer, clarification of the mechanism of HFE

associations in leukemia and cancer will have strong implications in public health. Genet Med 2005:7(3):159–

168.
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Hereditary hemochromatosis (HHC) is a common autoso-
mal recessive iron overload disease (OMIM 235200).1 Because
iron accumulation in vital organs and subsequent damage
takes a long time, the clinical onset is usually at or after middle
age. Traditionally, the disease has been diagnosed by assess-
ment of the biochemical iron parameters (serum iron and fer-
ritin levels, transferrin saturation). The gene responsible for
the majority of HHC cases has been identified as the HFE gene
on chromosome 6p21.3.2 The use of molecular testing in pre-
dictive diagnosis has been problematic because of the lack of
strong phenotype-genotype correlation.1,3– 6

Recent efforts have defined genetic heterogeneity for hered-
itary forms of iron overload and identified most of the genes
responsible.7,8 Besides autosomal recessive classic HHC, other
forms of hereditary iron overload exist (Table 1). The features

and molecular genetics of non-HFE hemochromatosis are re-
viewed elsewhere.7–9 The genes responsible for African
(OMIM 601195) and neonatal (OMIM 231100) iron overload
are still unknown (neonatal iron overload may be an alloim-
mune condition rather than genetic10). The importance of the
genetic heterogeneity is that it may have caused misclassifica-
tion error and, subsequently, some of the discrepancies in phe-
notype-genotype correlation in earlier HHC research.

Low penetrance of C282Y in causation of clinical HHC has
been established by linkage30 and molecular studies3–5,31–37 (see
review6). Specifically, some population-based mass screenings
have shown that � 1% of homozygotes develop frank clinical
hemochromatosis.35–37 It may be that expression of C282Y as a
clinical disorder requires the participation of other genes or
environmental factors.

GENE VARIANTS

Originally, two missense alterations were identified in the
HFE gene that occur at high frequencies in HHC patients and
in the general population: a G to an A at nucleotide 845 of the
original mRNA sequence (GI:1469789) in the amino acid
codon 282 in exon 4 (C282Y), and a C to a G at nucleotide 187
in the same sequence in the amino acid codon 63 in exon 2
(H63D). A third missense mutation in exon 2 (nucleotide 193
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in the mRNA sequence), S65C, has recently been identified
that may contribute to the development of a mild form of
HHC.38,39 Adherence to the above nucleotide numbers in de-
scription of these mutations is common practice but conflicts
with the current principles of nomenclature. Acceptable un-
equivocal description of these three HFE mutations is shown in
Table 2.

The total number of HFE variants detected to date is at least
37, of which 19 are missense11,29 (see also The Human Gene
Mutation Database). The most common mutation is C282Y.
The cysteine at position 282 within the immunoglobulin do-
main constant region takes part in a critical disulfide bond. The
C282Y mutation abolishes cell surface expression by prevent-
ing the association of the HFE gene product with beta-2 mi-
croglobulin.40 The second most common mutation H63D re-
sults in measurable consequences on hepatic iron levels in
mice41 but does not cause HHC even in homozygous form in
humans because of low penetrance and delayed action.34,42,43

In combination with a trans C282Y mutation, however, H63D
can cause HHC.42 The compound heterozygosity for C282Y

and H63D shows its effect on iron parameters at a level between
C282Y homozygosity and C282Y heterozygosity.34,44,45 The
C282Y mutation causes HHC as a result of a deficiency of the
HFE protein (loss-of-function) not by changing its function
(gain-of-function) or cellular location. There is no sign of hap-
loinsufficiency caused by heterozygous C282Y mutation.43

Toomajian and Kreitman46 have conducted a comprehen-
sive study of variation of the HFE gene on 60 chromosomes
from three continents. They found a total of 41 polymorphic
sites forming 18 distinct haplotypes in the 11,214-bp region
including the flanking regions. Some of these polymorphic
sites are in the 3' untranslated region of the gene and could
conceivably affect mRNA stability or levels of protein transla-
tion. Other known polymorphisms in the 5' flanking region47

or in intron 348 do not influence serum iron indices. Function-
ally important mutations of HFE and other iron-related genes
have been listed in a recent publication.29

A number of genotyping methods have been used to type
HFE variants. The most popular method is polymerase chain
reaction-restriction fragment length polymorphism (PCR-
RFLP) analysis.49 A multiplex PCR-RFLP method can type the
two most common mutations in a single assay.50 A compre-
hensive diagnostic assay for nonsynonymous changes in HFE
and mutations in some of the other iron metabolism regula-
tory genes using PCR-sequence specific primer (PCR-SSP)
method has been developed.11 Kits for exhaustive HFE typings
using reverse hybridization-based strip assay are available.51

Other methods include real-time PCR,52 SSCP,53 heteroduplex
analysis,54 and denaturing HPLC.55

POPULATION FREQUENCIES

Population frequencies of HFE gene variants for geographic
regions and ethnic groups have been presented in another

Table 1
Genes involved in regulation of body iron content

Gene
Gene symbol

(GeneID) Map position Disease (OMIM no.) References

Hemochromatosis HFE (3077) 6p21.3 Hereditary hemochromatosis (235200) 11

Hemojuvelin HFE2a (148738) 1q21.2 Juvenile hemochromatosis A (HFE2A; 602390) 12,13

Hepcidin HAMP (57817) 19q13.1 Juvenile hemochromatosis B (HFE2B; 606464) 14–17

Transferrin receptor-2 TFR2 (7036) 7q22 Hemochromatosis type 3 (HFE3; 604250) 18

Solute carrier family 40 (Ferroportin 1) SCL40A1b (30061) 2q32 Hemochromatosis type 4 (HFE4; 606069) 19,20

Ferritin heavy chain 1 FTH1 (397030) 11q13 Familial iron overload (134770) 21

Transferrin TF (7018) 3q22.1 See OMIM 190000c,d 22

Ceruloplasmin (Ferroxidase) CP (1356) 3q23-q25 See OMIM 117700c,e 23

Transferrin receptor-1 TFRC (7037) 3q26.2-qter See OMIM 190010 23

Haptoglobin HP (3240) 16q22.1 See OMIM 140100 23

aThis gene name does not conform to the conventions because hemojuvelin gene is not related to HFE; bformerly named SLC11A3; catransferrinemia and
aceruloplasminemia can cause iron overload; dthe C2 variant (P570S) interacts with C282Y in Alzheimer disease susceptibility24; eS142G polymorphism interacts with
C282Y in genetic associations with cancer susceptibility25–27 but no effect on HHC.28 Functionally important mutations of iron storage disease genes are reviewed
elsewhere.29

Table 2
Three most common HFE sequence variants

Amino acid
change

Nucleotide
changea dbSNP no.

Recommended
nomenclatureb

H63D 3511C�G rs1799945:C�G NT_007592.13:g.3732C�G

S65C 3517A�T rs1800730:A�T NT_007592.13:g.3738A�T

C282Y 5473G�A rs1800562:G�A NT_007592.13:g.5694G�A

aNucleotide numbering is from the translation initiation site. Reference se-
quence is NT 007592.13 (GI:29804415) in which the nucleotide 222 is the first
nucleotide of the first codon ATG; bas recommended by Human Genome
Variation Society (see Nomenclature for the Description of Sequence Varia-
tions). A fuller list of HFE mutations and their functional correlations are listed
elsewhere.11,29
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HuGE review1 and in more recent reports.34,56 In brief, the
C282Y mutation is confined to populations of European origin
and is most common in Northern Europe where the heterozy-
gote frequency is 10% to 20%.57

DISEASE

Childhood leukemias are rare diseases. Only 1 in 100 new
cancers is a childhood cancer and approximately 25% of child-
hood cancers are leukemias. Nearly 80% of childhood leuke-
mias are acute lymphoblastic leukemia (ALL). Childhood ALL
has been associated with prenatal exposure to ionizing radia-
tion, certain chromosomal abnormalities, infections and an
aberrant immune response to them, socioeconomic status,
maternal and perinatal factors, various environmental expo-
sures, and parental occupational history, but the actual causes
are largely unknown.58 – 60 Childhood leukemia is not inher-
ited. It is more likely that genetic susceptibility increases the
risk of an environmental exposure.61 Molecular epidemiologic
studies identified a number of genetic associations, mainly
with genes encoding xenobiotic and DNA repair enzymes.62,63

Another group of genes showing associations with childhood
ALL are human leukocyte antigen (HLA) genes with a yet un-
known biological mechanism.64 – 66

One of the most consistent findings in leukemia epidemiol-
ogy is the increased male-to-female ratio.60,67 Some genetic
association studies have also found gender-specific associa-
tions62,64,66 including the HFE association.68 It appears that
males may have a lower threshold for genetic factors to exert
their effect. The multifactorial threshold model for pyloric ste-
nosis is similar in that males have a lower threshold to be af-
fected with the disease.69,70 Why “maleness” lowers the liability
threshold in leukemia is unknown but possible reasons include
an epigenetic one as postulated for autism.71

ASSOCIATIONS

HFE is one of the molecules that participate in iron ho-
meostasis. It has been postulated that its main role is in iron
transport across the cell membrane including the regulation of
absorption in the gastrointestinal tract.72 Wild-type HFE re-
duces the affinity of transferrin receptor for transferrin-bound
iron,73 comigrates with it inside the cell,74 and regulates cellular
uptake of iron from transferrin within endocytic compart-
ments.75 When its expression is hampered, the interactions
with transferrin receptor on the cell surface and with trans-
ferrin inside the cell do not occur and iron influx is increased.
Despite these findings, it is possible that it has a more impor-
tant role in controlling expression of hepcidin (encoded by
HAMP), which has a regulatory role in downregulating the
intestinal iron absorption, placental transport of iron, and the
release of iron by macrophages.9,16

A twin study identified a considerable “additive” genetic
component in body iron level regulation. Within that compo-
nent, the share of HFE mutations was less than one would
expect.76 The small share of HFE variation in total heritability

has been confirmed in a population-based study.77 A study of
sib-pairs homozygous for C282Y showed significant variation
in iron overload between siblings.3 These findings attribute a
larger role to other genes involved in iron absorption, trans-
port, and storage. Two such genes, HAMP and HFE2, have
been shown to modify the expression of C282Y homozygosity
in HHC.13,15,17 The expression of C282Y mutation, in homozy-
gous or heterozygous form, may require genetic modifiers and
environmental interactions to have an effect on body iron
content.

Although not usually causing HHC, heterozygosity for
C282Y may also be relevant in disease susceptibility other than
HHC. On average, 1 in 10 individuals in European populations
may be heterozygous for the C282Y mutation.1,34,49,56 This is a
frightening frequency if carriers of this mutation are in any way
vulnerable to any disease.

A study of 1058 heterozygotes ascertained from 202 pedi-
grees by family HLA typing revealed that serum iron and fer-
ritin concentrations and transferrin saturation values generally
overlapped with the normal range but were higher in 15% to
25% of heterozygotes.78 Although mean transferrin saturation
in C282Y heterozygotes is only slightly elevated, the magnitude
of elevation was similar to that reported as a risk factor for
cancer in cohort studies.79

The findings of the study by Bulaj et al.78 corroborate with
those of other family- or population-based studies. In most
studies, up to 25% of heterozygotes have minor subclinical
iron status changes.31–34,80 – 88 In general, the population stud-
ies show a small but significant increase in transferrin satura-
tion and a small but usually insignificant increase in serum
ferritin. HFE heterozygosity has been confirmed as one of the
genetic factors affecting body iron content also in a twin
study.76 A meta-analysis of 14 studies concluded that C282Y
heterozygosity is associated with a 4-fold risk of increased iron
stores (95% confidence interval � 2.9 to 5.8), although the
reliability of this result was low due to heterogeneity.44 In a
minority of patients with HHC, heterozygosity for C282Y may
even be the only mutation detectable out of the three major
HFE mutations.31 An animal study showed that C282Y
heterozygosity is capable of increasing iron levels.89 Another
animal study noted the importance of genetic background in
the expression of HFE mutations.90 Ethnicity may be a modi-
fier in association studies because of the variation in other genes
involved in iron homeostasis. To date, only one study has sug-
gested higher penetrance for H63D in Hispanics5 but this finding
needs replication. The overall conclusion is that heterozygosity for
the C282Y mutation of HFE may increase serum iron levels in a
subset of carriers. Similar to C282Y heterozygosity, a very mild
effect of S65C mutation on iron overload has also been noted.91

The associations described later are most likely the result of serum
iron elevation in heterozygotes.

Association of iron levels with cancer

Increased risk for cancer in subjects with even moderately
elevated serum iron levels has been shown repeatedly. Prospec-
tive cohort studies including between 6,000 and 174,000 sub-
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jects have reported a link between indicators of high iron stores
and increased relative risk for cancer in general.79,92–97 These
studies include the first and second National Health and Nu-
trition Examination Surveys. Additional case-control studies
revealed the same link in colon98 and liver cancer.99,100 Some
studies yielded negative results in gastric101 and epithelial can-
cers.102 The link between increased body iron and cancer was
also suggested by the decreased cancer incidence in regular
blood donors in Sweden.103

Increased intracellular iron can influence the process of car-
cinogenesis by catalyzing the formation of mutagenic hydroxyl
radicals, by acting as an essential nutrient for proliferating neo-
plastic cells, or by its deleterious effects on the immune sys-
tem.104 –106 One of the immune disturbances in iron overload is
the higher average CD4:CD8 ratios,and this is not related to the
mutations in HFE but directly to iron.107 The evidence for a
procarcinogenic role of iron is presented in Table 3.

As the major site of iron storage, the liver is most sensitive to
iron overload. As a result, liver cancer risk secondary to cirrho-
sis is enormously increased in HHC and the risk is also in-
creased in non-HHC iron overload (see Table 3). In a study of
230 patients and 230 controls with noniron-related chronic
liver diseases, the increased risk for extra hepatic cancers in
HHC showed no correlation with HFE genotype, indicating
that it is iron itself but not HFE that confers risk for cancer.130

HHC is not the only oxyradical overload disease. Another he-
reditary disease characterized by intracellular copper overload,
Wilson disease (OMIM 277900), also shows increased long-
term risk with internal malignancies including hepatoma.131

Higher expression of biomarkers for oxidative stress and in-
creased frequency of P53 tumor suppressor gene have been
observed in both oxyradical overload diseases.132 More fre-
quent spontaneous and radiation-induced chromosomal
damage in HHC133 may be an important mechanism for cancer
development in iron overload. Although not a uniform find-

ing, several studies reported an increased risk for extrahepatic
cancer in HHC.124,130

Association of HFE with leukemia and lymphoma

An earlier study found an increased risk for cancer in oblig-
atory heterozygotes for the putative HHC gene.134 The associ-
ation with hematologic malignancies was restricted to males.
After the discovery of HFE as the HHC gene,2 a number of
studies have investigated C282Y and H63D mutations in dif-
ferent cancers. The first ones were conducted by Beckman et
al.25–27 who found an increased frequency of C282Y mutation
in multiple myeloma, breast, colorectal, and liver cancers, but
only in interaction with the S142G (g.424A�G) polymorphism
of TFRC. Since then, C282Y associations have been reported in
colon135 and breast cancer136 and an H63D association in ma-
lignant glioma.137 Two studies did not find any increase in
C282Y frequency in colon cancer.138,139 One study investigated
the HFE mutations in a series of cancers and did not find a
generally increased frequency.140 We have recently determined
the C282Y frequency in 147 cases with human immunodefi-
ciency virus (HIV)–induced Kaposi sarcoma and their HIV
and 147 human Kaposi sarcoma herpes virus (KSHV) double-
positive matched controls all from the Multicenter AIDS Co-
hort Study (MACS).141 We did that because of the suggestion
that iron is involved in the pathogenesis of classic Kaposi sar-
coma.142 The matched pair analysis by conditional logistic re-
gression yielded an odds ratio of 5.4 (95% CI � 1.8 to 16.4; P �
0.0009). The mutation frequency was 14.5% in cases (all het-
erozygous) and 3.0% in matched-controls. It is unknown
whether C282Y is associated with cancers because of its effect
on body iron content or linkage disequilibrium (LD) with an-
other gene. The Kaposi sarcoma study also investigated the
HLA complex and endothelin-1 gene (EDN1) on either side of
HFE (M.T. Dorak et al., manuscript in preparation, 2005). The
C282Y association was independent of the other associations
found with EDN1 and HLA genes.

HFE associations have been sought also hematologic malig-
nancies (Table 4). We reported the C282Y frequencies in child-
hood acute lymphoblastic leukemia (ALL).68 In a case-control
study of Welsh and Scottish patient groups, there was an in-
crease in C282Y mutation frequency compared to newborns
from respective newborn controls but in males only. The asso-
ciation mainly concerned heterozygosity for C282Y. H63D was
examined only in the larger Scottish group and did not seem to
contribute to leukemia susceptibility. Recent detailed work
ruled out LD with EDN1 and several HLA complex loci as the
reason for this association.143

There is one other published report on the C282Y mutation
in childhood leukemia from Finland.148 In a study of 232
mainly adult patients with various hematologic malignancies,
32 patients with childhood ALL (14 boys) did not have an
increased frequency of C282Y. The Finnish study did not find
an increased frequency in any of the subsets (n � 15 to 53). In
another study of 36 Spanish patients with adult acute myeloid
leukemia and 108 controls, the frequencies for C282Y and
H63D were not different between cases and controls.145 Both

Table 3
Evidence suggesting a procarcinogenic role for iron

Finding or observation References

Iron-induced oxidative DNA damage 104,106,108–110

Iron-induced abnormalities of immune function 107,111,112

Increased susceptibility to viral infections 113,114

Iron as an essential nutrient for proliferating
neoplastic cells

115–118

Animal experiments showing procarcinogenic
effect of iron

105,116,117,119–121

Increased liver cancer risk in HHC 122–126

Increased liver cancer risk in non-HHC iron
overload

105,127,128

Correlation between serum iron levels and
cancer risk

79,92–100,129

Correlation between regular blood donation and
reduced cancer risk

103
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these studies appear to have shown negative results but obvi-
ously they were underpowered to detect significant differences.
Notably, the two studies that have shown an association in
childhood leukemia are British studies and to what extent this
finding can be generalized to other populations is currently
unknown.

Other studies of HFE associations in hematologic malignan-
cies included our own adult Hodgkin disease case-control
study,144 which revealed no association; and a myelodysplastic
syndrome study in Hungary with a positive association,146

which could not be replicated in Greece.147 In the breast cancer
study performed in Tennessee, the cases included patients with
hematologic malignancies transplanted in the same center.136

The C282Y frequency in this subset was 17.0% (n � 129) com-
pared with local (12.7%, n � 118) and national (12.4%, n �
2016) mutation frequencies, which appears to be increased.

All HFE-cancer association studies reported to date are case-
control studies that have recognized limitations. Chance asso-
ciations cannot be ruled out— even with replication— until
functional studies identify the biological mechanism of the re-
ported associations.

Possible mechanism of leukemia association

In other cancers associated with C282Y, statistical interac-
tions with a TFRC allele,25–27 increased iron intake in diet and
older age,135 and correlation between C282Y gene dosage and
body iron stores in breast cancer136 strongly argue that the
mechanism of the HFE associations with cancer is related to
iron. Thus, molecular HFE association studies seem to com-
plement the effect of elevated iron on cancer risk. The question
that whether the same risk applies to a childhood cancer has
not been tested experimentally.

HFE is expressed by lymphoid as well as myeloid cells. In a
B-lymphoid cell line homozygous for C282Y and analyzed in
detail, iron uptake is increased and cell sensitivity to oxidative

stress is enhanced.149 This sensitivity to oxidative stress is cru-
cial in iron-induced carcinogenesis.104 –106,108 –110 Chronically
increased oxidative stress from elevated levels of iron in the
body may increase radiation sensitivity by decreasing cellular
oxygen radical scavenging capability. Low-level radiation sen-
sitization by iron, which can occur in lymphocytes, has been
proposed to increase cancer susceptibility,150,151 and heterozy-
gosity for HFE mutations has been emphasized as a risk fac-
tor.152,153 Given the higher sensitivity to environmental expo-
sures during early development, C282Y heterozygote fetuses,
especially if their mothers are the origin of their mutation, may
be subject to higher intracellular iron levels in their lymphoid
cells. This may have a promoter effect if a lymphoid cell has
leukemic transformation spontaneously or due to environ-
mental exposure. Unlike adult cancers, no link has been inves-
tigated between body iron stores and childhood cancer, but in
neuroblastoma, Hodgkin disease, and ALL, an unfavorable ef-
fect of increased iron stores has been shown on survival.154 –156

There is a putative link between viral infection and childhood
ALL.58,157 Elevated iron levels in lymphoid cells may be rele-
vant in this context because iron favors viral infections in ani-
mals.113,114 Damage caused by iron overload in internal organs
takes years, and is sex- and age-dependent. The proposed
mechanism for childhood ALL entails increased intracellular
iron levels in lymphoid cells during development. If iron con-
tributes to childhood ALL susceptibility, other genes with roles
in iron metabolism (Table 1) are expected to show associa-
tions. This can be investigated in incident case studies of child-
hood leukemia and other cancers to separate the effects of iron
from a genetic association secondary to LD with C282Y
mutation.

At present, all cancer and leukemia associations with HFE
are no more than statistical associations. Assuming they are
real, an alternative mechanism to be explored is other genes
around the HFE locus. Several candidates already exist.144

Table 4
Associations of hematologic malignancies with C282Y

Disease
Case/control

numbers Controls C282Y frequencies (%)a Odds ratio (95% CI; P) References

Childhood ALL (Wales) 117/415 Local newborns 23.4 vs. 12.3b 2.19 (1.14 to 4.18; P � 0.03) 68

Childhood ALL (Scotland) 135/238 Local newborns 34.7 vs. 15.1c 2.98 (1.65 to 5.39; P � 0.0004) 68

Adult Hodgkin’s disease (Wales) 121/10556 Local blood donors 11.7 vs. 15.8d NS 144

Adult Acute Myeloid Leukemia (Spain) 36/108 Local blood donors 8.3 vs. 7.4 NS 145

Myelodysplastic syndrome (Hungary) 50/80 Local blood donors 10.0 vs. 5.0 2.11 (0.54 to 8.27; NS)e 146

Myelodysplastic syndrome (Greece) 54/264 Local blood donors 0.0 vs. 0.0 NSf 147

Hematologic malignancies (Finland) 232/128 Local medical students 8.2 vs. 10.2 NS 148

Hematologic malignancies (AL, USA) 52/318 Local population controls 0.04–0.21 vs. 0.09 0.4 to 2.8 (NS)g 140

Hematologic malignancies (transplant
patients) (TN, USA)

129/118 Local controls 17.0 vs. 12.7 1.41 (0.69 to 2.87; NS)h 136

aAll frequencies are marker frequencies (proportion of individuals positive for C282Y); bmale patients only (n � 64); cmale patients only (n � 75); dcontrol frequency
is from ref. 34; ethis study reported a significant increase in combined HFE mutation (C282Y and/or H63D) frequency in patients (52.0% vs. 31.3%; OR � 2.38, 95%
CI � 1.15 to 4.94, P � 0.03); fcomparison of H63D mutation frequencies between cases and controls yielded an OR of 1.87 (95% CI � 0.95 to 3.68, Fisher’s P �
0.08-our calculation); gORs vary for each subset with n � 5 to 13; hour calculation.

HFE gene and leukemia

March 2005 � Vol. 7 � No. 3 163



Among those, EDN1 is a strong one to be responsible for the
C282Y association through LD. Although our preliminary
study of EDN1 in childhood ALL showed a weak but indepen-
dent association with no LD with C282Y,143 a more compre-
hensive study is required to rule out the involvement of neigh-
boring genes and even other variants of HFE in C282Y
association.

Association of HFE with nonmalignant diseases

Besides HHC, associations have suggested that the HFE mu-
tations may also be involved in the development of other non-
malignant diseases. These include cardiovascular diseases, di-
abetes, arthritis, neurodegenerative disorders, and alcoholic
liver disease.45,158 Most of these associations, however, have
been inconsistent. A list of conditions showing genetic associ-
ations with HFE is being compiled at the NCBI Genetic Asso-
ciations Database.

It has to be underlined that none of the disease associations
suggests a uniformly deleterious effect of C282Y mutation. If
this was the case, one would expect a negative association be-
tween C282Y and longevity. Despite an early suggestion, latest
studies conclusively ruled out an age-related decline in C282Y
frequency.56,159 More comprehensive studies taking into ac-
count genetic and environmental interactions are needed to
conclude whether a subgroup of HFE mutation carriers has
higher rates of disease and what additional factors identify that
subset.

INTERACTIONS

Only one gene-gene interaction, between HFE and TFRC in
multiple myeloma,25 and no gene-environment interaction
has been investigated in hematological malignancies. In iron
overload, however, a number of factors in addition to HFE
mutations affect the severity. In the most extreme example of
Hfe knockout mice, the strain of mice determines the amount
of iron in the liver.160 HAMP17 and TFRC gene polymor-
phisms,25–27 mitochondrial DNA mutations,161 parent-of-ori-
gin,78 and environmental factors (including pregnancy, regu-
lar blood loss, iron intake, hepatitis B and C, and alcohol) have
been suggested to interact with C282Y in its associations with
diseases or in its effect on biochemical parameters of iron
stores.1,6,9,76,162–164 The P570S polymorphism of the transferrin
gene shows an epistatic interaction with C282Y as a risk marker
for Alzheimer disease.24 This variant of TF has not been exam-
ined in biochemical iron overload states.

Phenotypic expression of HHC is affected by the presence or
absence of the telomeric HLA ancestral haplotype character-
ized by HLA-A*03, D6S265-1, and D6S105-8.165,166 Patients
bearing this haplotype tend to have more severe forms of HHC,
and this effect is dependent on gene dosage.81,167,168 However,
this has not been a universal finding.169 Because of the effects of
the ancestral haplotype on disease phenotype, HFE association
studies in other diseases need to cover the area between HLA-A
and HFE. This may have some bearing on the different results
for the same genetic association in different populations.

GAPS AND RESEARCH PRIORITIES

Leukemia and lymphoma associations with HFE have not
been sufficiently studied. Available studies are relatively small
case-control studies.

Definitive studies are needed

Given the population frequency of common HFE variants
and potential implications of any disease association on public
health, there is need for a definitive study on HFE associations
in hematopoietic cancers and especially for their mechanisms.
Despite the rarity of childhood leukemias, Children’s Oncol-
ogy Group in USA and United Kingdom Childhood Cancer
Study Group have been collecting large numbers of samples
through nationwide recruitments. However, it is also impor-
tant to perform association studies in other ethnic groups.
Given the strong effect modification by sex, even comparison
of male patients with female patients (without controls) may
provide clues whether the male-specific HFE association can
be confirmed in large prospective incident case studies.

Other iron-related genes need to be tested

The influence of HFE on body iron stores is small. If an
iron-related mechanism is operating, variants of other genes
taking part in iron homeostasis should also show associations.
This is particularly important in geographic regions where
HFE variants have small frequencies.

Possible gene-gene interactions should be addressed

An interaction between HFE and another gene in the region
between HFE and HLA-A may explain the ancestral haplotype
effect on HHC phenotype observed in some studies. Similarly,
the HFE gene itself should be thoroughly examined especially
in its regulatory regions. Interactions with the known poly-
morphisms of other genes such as TFRC (424A), HAMP
(R59G, G71D, or R56X), and HFE2/HJV (S105L, E302K,
N372D, R335Q, L101P, G320V) that have an effect on iron
status are important ones. No cancer association studies with
HFE concurrently examined the genes encoding antioxidant
enzymes. Cellular antioxidant defense mechanisms against
prooxidant states include enzymes such as superoxide dis-
mutase, catalase, and glutathione systems.104,170 Given the an-
tipromoter and anticarcinogen activity of antioxidant defens-
es,171,172 deleterious effect of iron would be greater in states of
reduced antioxidant reserve. The genes for these enzymes have
known functional polymorphisms170 and these may also inter-
act with HFE mutations to increase susceptibility to leukemia.

Gene-environment interactions require attention

Exposure to environmental iron during pregnancy or early
childhood may interact with HFE variants in determination of
leukemia susceptibility. A gene-environment interaction may
also be shown with routine iron supplementation during preg-
nancy except when indicated for iron deficiency. In light of
other genetic effect modifiers of common exposures,173 exam-
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ination of an interaction between maternal iron intake and the
presence of C282Y in the offspring may be a worthwhile effort.

Parent-of-origin effect has not been studied

The association with childhood ALL may have to do with
intrauterine environment if it is due to the generally increased
sensitivity of developing child (from fetus to prepuberty) to
environmental assaults.174 It is a possibility that the association
may be restricted to C282Y carriers who have inherited it from
their mothers and whose intrauterine environment had ele-
vated levels of iron because of heterozygosity in mothers.

A large case-control study that would carefully construct the
functionally relevant haplotypic variants of the HFE gene, ex-
amine selected other genes involved in iron metabolism with
incorporation of appropriate questionnaire data on iron sup-
plementation and dietary habits is going to be an appropriate
first step to fill the gap of knowledge outlined above, especially
when conducted where the evidence appears to be strongest for
childhood leukemia association. A prospective family-based
association study can achieve the same purpose while provid-
ing additional information on the question of parent-of-origin
effect.

CONCLUSIONS

The male-specific association of C282Y with childhood ALL
in two populations seems to have generated useful hypotheses
that can be tested. Currently available evidence suggests that
this association with leukemia susceptibility arises from its ef-
fect on body iron levels. The sex-dependent penetrance of
C282Y is age-dependent and cannot explain the male-specific-
ity of the C282Y association in childhood. The presence of
other male-specific genetic associations with childhood leuke-
mia brings about the possibility of an additive role for these
susceptibility markers over and above the risk conferred by
“maleness” in a multifactorial threshold model. While what
makes maleness a risk factor in genetic terms is studied, the
HFE-associated susceptibility to childhood leukemia will have
to be elaborated by extending the association studies to other
iron-related functional genes and by taking into account gene
and environment interactions. The C282Y association in leu-
kemia and other cancers may highlight the need to focus on the
known connection between iron and cancer in which HFE
plays only a limited role. The very high frequency of C282Y in
European populations does not mean that we are dealing with
a problem restricted to Europe and America. If this association
is due to elevated iron levels at biochemical level, the implica-
tions on the risks being inflicted by food-iron fortification pro-
grams, uncontrolled supplemental iron intake, and routine
iron prescription in pregnancy will be worldwide.

Electronic resources

The following electronic resources were consulted for this
review: Gene Tests (http://www.genetests.org), Kowdley et al.
provide a regularly updated review of HHC and its genetics;
NCBI Entrez Gene (http://www.ncbi.nlm.nih.gov/entrez/query.

fcgi?db�gene) replacing NCBI LocusLink; NCBI OMIM,
Online Mendelian Inheritance in Man (http://www.ncbi.nlm.
nih.gov/entrez/query.fcgi?db�omim); NCBI Genetic Associa-
tions Database (http://geneticassociationdb.nih.gov); The Hu-
man Gene Mutation Database (Cardiff, UK) (http://archive.
uwcm.ac.uk/uwcm/mg/search/119309.html); and Nomenclature
for the Description of Sequence Variations (Human Genome
Variation Society) (http://www.genomic.unimelb.edu.au/mdi/
mutnomen).12–30,101–130
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